

Name:__

 1

Problem #1: Short Answers [20 points] (15 minutes)

a) Pointers and Structure [5 points] (5 minutes)
struct node{
int value;
struct node *next; };

struct list{
char foo;
char *ptr;
struct node *listHead;
int *bar;
int size; };
struct list linklist;

a.1) [2 points] What is the correct C syntax to access the field value in struct node
through the variable linklist?

a) linklist.listHead.value
b) linklist->listHead->value
c) linklist->listHead.value
d) linklist.listHead->value
e) none of the above

a.2) [3 points] On a MIPS machine with 32 bit addressing, and every word in memory
must be aligned to 4 byte addressing, how many bytes does the compiler allocate for the
variable
linklist?
a) 14
b) 16
c) 17
d) 20
e) 24
f) none of the above

b) [5 points] (5 minutes) Consider the following fragment of MIPS.
1 la $a0, buffer #a
2 loop:
3 beq $a0, $a1, continue #b
4 lw $t0, 0($a0) #c
5 …
6 addiu $a0, $a0, 4 #d
7 jal foo #e
8 j loop #f
9 continue:
10 add $t0, $0, $0
11 …
Of the lines commented [a-f], which of these instructions are not completely determined
until linking?

Name:__

 2

c) Executing a program [10 points] (5 minutes)
Following is a list of tasks that must be done to run a program written in C. Sort the tasks
into the order in which they are executed and for each step, indicate which tool performs
the step (where the tool is the compiler, assembler, linker or loader).

a. Store resulting code in a.s file
b. Combine text and data segments from multiple input files.
c. Store resulting code in an executable file
d. Load text and data segments in to memory.
e. Compute offsets for all branch instructions.
f. Compute absolute address for all relocation table entries; rewrite instruction(s) to hold
the new address.
g. Replace pseudoinstructions with one or more real instructions.
h. Translate C code to equivalent assembly language code.
i. Store resulting code in a.o

Write your answers here:

1. Task: _____________________________Tool:_______________________________

2. Task: _____________________________Tool:_______________________________

3. Task: _____________________________Tool:_______________________________

4. Task: _____________________________Tool:_______________________________

5. Task: _____________________________Tool:_______________________________

6. Task: _____________________________Tool:_______________________________

7. Task: _____________________________Tool:_______________________________

8. Task: _____________________________Tool:_______________________________

9. Task: _____________________________Tool:_______________________________

Name:__

 3

Problem #2: Number Representation [15 points] (15 minutes)

a) [5 points] (5 minutes) Take the number -3/16 (base ten) and convert it to 32 bit IEEE
754 floating-point standard (the one discussed in class)

Reminder: A 32 bit floating point number has 1 sign bit, 8 bits for the exponent and 23
bits for the significand.

b) [5 points] (5 minutes) Convert 0x43340000 – a single precision floating point
number – to binary scientific notation (e.g., ½ (base 10) would be 1.0 x 2-1).

c) [5 points] (5 minutes)
For the following MIPS assembly language program:
loop: addi $t0, $t0, -1
bne $t0, $zero, loop

Translate the second instruction into MIPS machine language and write it in hex.

Name:__

 4

Problem #3: C Programming [25 points] (20 minutes)
Write the code for the C function:
char * insertChar(char *s, char c, int pos),
which returns the result of inserting the given character at the given position. s is a
pointer to the first element of a string and c is the character that you should insert at the
pos element of s. You must return the pointer to the first element of a new string, which
is identical to s except with the one additional character inserted at the specified position.
You are not allowed to modify the string s. You are free to use any of the following
functions from string.h library:

int strlen(char *s) – returns the length of the string

char *strncat(char *sl, char *s2, int n) - The function copies the string s2, not including
its terminating null character, to successive elements of the array of char whose first
element has the address s1. It copies no more than n characters from s2. The function
then stores zero or more null characters in the next elements to be altered in s1 until it
stores a total of n characters. It returns s1.

char *strcat(char *s1, char *s2) - The function copies the string s2, including its
terminating null character, to successive elements of the array of char that stores the
string s1, beginning with the element that stores the terminating null character of s1. It
returns s1.

Name:__

 5

Problem #4: Assembly Language [25 points] (30 minutes)
On the midterm, you were given the following question:

A list is a series of elements that are sequentially connected to each other. A list node is a
structure that represents a single element of a list. A list node is formally defined as
follows:

A list is simply a series of these nodes connected using pointers.

Write a C function that completely reverses the ordering of the elements in the list. The
function should be named reverse and should take one argument: a pointer to the first
ListNode object of the list. It should return a pointer to the new first element of the
list (which was previously the last element)

Now, you must write a recursive MIPS assembly code for this C function. You must
follow register conventions as well as standard procedure calling conventions for full
credit on this question. In other words, make no assumptions about the calling procedure.

For you convenience, here is the answer to the midterm question that accomplishes the
desired task.

ListNode * reverse(ListNode *aNode)
{
 ListNode * tempNode;

 if(aNode == NULL)

{return NULL;} //check for incorrect input

 tempNode = aNode->next; //save the next pointer
 aNode->next = aNode->prev; //switch the prev and next ptrs
 aNode->prev = tempNode;

 if(aNode->prev == NULL) //stop if end of list
 { return aNode; } // has been reached
 else
 { return Reverse(aNode->prev); } //otherwise continue
 // recursively
}

1. Solutions that are not recursive will not get any credit
2. You must follow all register conventions and procedure calling conventions
3. No pseudoinstructions. TAL (true assembly language) only. This means you can

only use instructions from the back cover of the textbook.
4. You must write comments. Code that is not adequately commented will be

penalized.

Name:__

 6

Reverse:

Name:__

 7

Problem #5: Decompilation [25 points] (20 minutes)
stewie:

addi $t0, $a2, 1
brian:

bge $t0, $a1, chris
mul $t1, $t0, 4
add $t1, $t1, $a0
lw $t2, 0($t1)
sub $t1, $t1, 4
sw $t2, 0($t1)
addi $t0, $t0, 1
j brian

chris:
jr $ra

a) [20 points]

Translate the stewie function above into C. You should include a header that lists
the types of any arguments and return values. Also, your code should be as
concise as possible, without any gotos or explicit pointers. We will not deduct
points for syntax errors unless they are significant enough to alter the meaning of
your code.

b) [5 points] Describe, in English, what this function computes.

Name:__

 8

Problem #6: Self Modifying Program [15 points] (10 minutes)

The following code illustrates how a program can modify itself. For simplicity, there is
only one instruction that is modified by the program, and assumes you run this code on
SPIM.

1 __start:
2 addiu $t0, $0, 0 # $t0 = 0
3 addiu $t1, $0, 0 # $t1 = 0
4 addiu $t2, $0, 2 # $t2 = 2
5 loop:
6 addiu $t0, $t0, 1 # $t0 = $t0 + 1
7 beq $t0, $t2, next # if ($t0 == $t2) branch to next
8 jal loop
9 next:
10 addu $t1, $t1, $ra # $t1 += $ra
11 beq $t1, $0, exit # if ($t1 == 0) branch to exit
12 lw $t3, 0($t1) # $t3 = mem[$t1]
13 addiu $t3, $t3, 1 # $t3 += 1
14 sw $t3, 0($t1) # store word $t3 to memory
15 j next # jump to next
16 exit:
17 done # program finishes

6.1 [5 points] Please identify which line is modified by the program?

6.2 [10 points] Write out the new MIPS instruction in TAL for this line.

